International Journal of Management and Applied Science (IJMAS)
current issues
Volume-4,Issue-8  ( Aug, 2018 )
Past issues
  1. Volume-4,Issue-8  ( Aug, 2018 )
  2. Volume-4,Issue-7  ( Jul, 2018 )
  3. Volume-4,Issue-6  ( Jun, 2018 )
  4. Volume-4,Issue-5  ( May, 2018 )
  5. Volume-4,Issue-4  ( Apr, 2018 )
  6. Volume-4,Issue-3  ( Mar, 2018 )
  7. Volume-4,Issue-2  ( Feb, 2018 )
  8. Volume-4,Issue-1  ( Jan, 2018 )
  9. Volume-3,Issue-12  ( Dec, 2017 )
  10. Volume-3,Issue-11  ( Nov, 2017 )

Statistics report
Nov. 2018
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 54
Paper Published : 3316
No. of Authors : 6857
  Journal Paper




Paper Title :
Using Artificial Neural Network (ANN) Back Propagation to Predict The Bankruptcy of Islamic Banks in Indonesia

Author :Sana Hanifah, Taufik Faturohman

Article Citation :Sana Hanifah ,Taufik Faturohman , (2017 ) " Using Artificial Neural Network (ANN) Back Propagation to Predict The Bankruptcy of Islamic Banks in Indonesia " , International Journal of Management and Applied Science (IJMAS) , pp. 7-11, Volume-3,Issue-4

Abstract : As a business entity, the Islamic banks also cannot free from financial distress and the bankruptcy. The economy conditions cannot be known certainty and the presence of open competition both in national and international become a major concern of issues of Islamic banking in Indonesia. The research objectives are to define the prediction of bankruptcy in Islamic Banking to the banking industry in Indonesia by utilizing ANN and check the consistency, mention the failed banks and success banks by the prediction results, and explain the factors must be improved to avoid the failure. The data used in this research are published by the Islamic banks and the conventional banks in Indonesia. Since there are not failure Islamic banks in Indonesia nowadays, so this research use the data of conventional banks. Quarterly calculations of the financial ratios will be processed in the MATLAB R2014a version with neural network backpropagation approach. From the results, can be known that the average of accuracy of the networks in predicting the failed bank group is 98.5% and 100% for the success bank group in the training process. From 12 banks, the network trained indicates one bank as the failed bank. There are three banks which must pay attention to their two financial ratios. Then, there are three banks which each of them must improve one ratio. Lastly, five banks predicted success in all ratios. The result of robustness test is the networks could predict the success bank group with perfectly corrects prediction. Index Terms- Islamic banks in Indonesia, bankruptcy, prediction method, Artificial Neural Network (ANN)- Backpropagation

Type : Research paper

Indexed : Google Scholar


Copyright: © Institute of Research and Journals

| PDF |
Viewed - 45
| Published on 2017-06-26
   
   
IRAJ Other Journals
IJMAS updates
IJMAS -THANK YOU ALL FOR CONTRIBUTING YOUR PAPER TO IJMAS DECEMBER ISSUE.ALL AUTHORS ARE REQUESTED TO GET THEIR HARD COPY NOW.
The Conference World

JOURNAL SUPPORTED BY